Борьба с шумом - одна из актуальнейших проблем нашего времени. Действуя на центральную нервную систему, шум вызывает усталость, бессоницу, неспособность сосредоточиться, которые ведут к снижению производительности труда и несчастным случаям. При постоянном раздражающем воздействии шума могут возникнуть психические нарушения, сердечно-сосудистые заболевания, язвенная болезнь, тугоухость. Шум может повлиять на слух различным образом: вызвать мгновенную глухоту или повреждение органа слуха (акустическая травма); при длительном воздействии резко снизить чувствительность к звукам определенных частот или снизить чувствительность на ограниченное время - минуты, недели, месяцы, после чего слух восстанавливается почти полностью. Наиболее вредны для слуха длительные периоды непрерывного воздействия шума большой интенсивности. Если человек подвергается несколько минут воздействию звука средней или высокой частоты с уровнем около 90 дБ, то у него наступает временный сдвиг порога слышимости. С увеличением времени воздействия и ростом уровня шума повышается временной сдвиг порога и удлиняется период восстановления.
   Люди неодинаково реагируют на шум. Одна и та же доза шумового воздействия у одних вызывает повреждение слуха, у других - нет, у одних эти повреждения могут быть тяжелее, чем у других. Шум - это разновидность звука. Звук представляет собой колебания среды (твердой, жидкой или газообразной), в которой он распространяется. К доступным для измерения характеристикам звука относятся: интенсивность - I , звуковое давление - р и скорость - v . Интенсивность звука (Вт/м2) характеризуется потоком энергии, которую несет звук, приходящейся на единичную площадку.
   Соотношение между интенсивностью звука I и звуковым давление р таково:

   где р - звуковое давление (разность между мгновенным значением полного давления и средним значением давления, которое наблюдается в среде при отсутствии звукового поля), Па; ρ - плотность среды, кг/м3; с - скорость звука в среде, м/с.
   Интенсивность самого слабого (10 Вт/м2) слышимого звука равна 10 -12 Вт/м2. Наибольшая интенсивность звука, с которой мы сталкиваемся без риска для жизни, - это шум реактивного самолета. Сравнивать приведенные величины сложно из-за огромной разницы. Поэтому для измерения интенсивности звука и таких параметров, как давление и мощность звука, вводится относительная логарифмическая единица, называемая уровнем звукового давления или уровнем интенсивности.
   Уровень интенсивности звука


   где Iо - интенсивность звука, соответствующая пороговому уровню (Iо = 10 -12 Вт/м2).
   Уровень звука измеряется в децибелах (дБ). Так как уровень звука - логарифмическая относительная величина, то при удвоении интенсивности звука уровень интенсивности увеличивается на 3 дБ. Если же имеется п одинаковых источников шума, общий уровень интенсивности


   Человеческое ухо и многие акустические приборы реагируют не на интенсивность звука, а на звуковое давление. Уровень звукового давления

   где ро - пороговое звуковое давление (ро=2X10 -5 Па).
   Связь между уровнем интенсивности и уровнем звукового давления следует из формулы

   где ρо и Со - плотность среды и скорость звука при нормальных атмосферных условиях, т. е. при t=20°С, ро=10 5 Па.
   При распространении шума в нормальных атмосферных условиях Li=Lp. Значения уровней шума приводятся в табл. 4.3.
   Одним из самых существенных вопросов исследования шума является поведение звука в зависимости от частоты. Нижняя граница восприятия человеком звука составляет около 20 Гц, а верхняя около 20 000 Гц. Зависимость уровня звука от частоты называется частотным спектром шулш. Определение интенсивности звука для каждой частоты потребовало бы бесконечного числа измерений, поэтому весь возможный диапазон частот разделяют на октавы и для каждой октавы подсчитывают среднегеометрическое значение частоты.

Таблица 4.3. Уровни различных звуков в зависимости от источника шума и расстояния

Источник шума На расстоянии, м Уровень, дБ
Жилая комната - 35
Речь средней громкости 1 60
Машинописное бюро - 65
Металлорежущие станки На рабочем месте 80...96
Дизельный грузовик 7 90
Пневмоперфоратор 1 100
Реактивный двигатель 25 140

   Граничные и среднегеометрические (в этих границах) частоты приведены ниже:


   В зависимости от того, на какой частоте находится максимум звукового давления, характер спектра может быть низкочастотным (максимум ниже 300 Гц), средне-частотным (максимум в области 300...800 Гц) и высокочастотным (максимум выше 800 Гц).
   По характеру спектры шума можно подразделить также на широкополосные и тональные. Широкополосный шум имеет непрерывный спектр шириной более одной октавы, это означает, что каждой частоте октавы соответствует некоторый уровень шума.

Рис. 1. Предельные спектры шума
   Такой тип шума характерен для работы вентиляторов. В спектре тонального шума имеются отдельные дискретные составляющие. Подобный спектр имеет, например, шум, создаваемый при работе дисковой пилой. Распределение нормативных уровней звукового давления по частотам представляет собой предельный спектр. На рис. 1 приведены предельные спектры для помещений различного типа: 1 - палаты жилые помещения; 3 - территории больниц, кабинеты врачей, номера гостиниц; 4 - учебные помещения; 5 - территории жилых домов, детских и школьных площадок; 6 - помещения конструкторских, проектных и научно-исследовательских организаций 7 - фойе театров, залы ресторанов; 8 - рабочие места управлений, вычислительные центры; 11 - постоянные рабочие места в производственных помещениях, в кабинах дорожно-строительных, землеройно-транспортных и других аналогичных машин.

   В нормативные уровни шума следует вводить поправки, забисящие от характера шума и Длительности его воздействия (табл. 2), Уровень шума, полученный с учетом поправок, называют допустимым.
   В проектах по строительству того или иного объекта должны быть отражены все мероприятия по снижению шума, подтвержденные соответствующими акустическими расчетами, которые производят на стадии технического проекта по комплексу сооружений или по отдельному объекту.

Рис. 2. Пути распространения шума в здании
   Акустический расчет заключается в следующем: выявляют источники шума и определяют их шумовые характеристики; выбирают точки в помещениях и на территории, для которых должен производиться акустический расчет; определяют допустимые уровни звукового давления для этих точек; выявляют пути распространения шума от источников до расчетных точек; определяют ожидаемые уровни звукового давления в расчетных точках до осуществления мероприятий по снижению шума; определяют требуемое снижение шума; выбирают и рассчитывают конструкции для обеспечения требуемого снижения уровня шума.
   Требуемое снижение уровня ALTp звукового давления в расчетной точке

   где Li - ожидаемый уровень звукового давления, создаваемый источником, дБ; Lnon - допустимый уровень звукового давления, дБ; п - количество принимаемых в расчет источников шума.
   Пути распространения шумов в зданиях разнообразны (рис. 2). Шум проникает через ограждающие конструкции, звук, многократно отражаясь от стен, потолка, предметов, значительно усиливается и увеличивает общий уровень шума в помещении.
   Причиной возникновения шумов могут быть механические, аэродинамические и электромагнитные явления. Механические шумы вызваны ударными процессами, трением в деталях машин и др. Аэродинамические шумы возникают при течении жидкости или газа, а электромагнитные при работе электрических машин и оборудования.
   Борьба с шумом осуществляется: техническими средствами, уменьшающими шум машин и оборудования в источнике его образования, изменяющими технологические процессы; строительно-акустическими мероприятиями; устройством дистанционного управления шумными агрегатами; организационными мероприятиями; применением средств индивидуальной защиты.
   Уменьшение шума в источнике его образования наиболее рационально и достигается улучшением конструкции машин, применением материалов для деталей машин, не издающих сильных звуков, обеспечением минимальных допусков в сочленениях деталей, использованием смазки и др. Эффективность таких мероприятий по уменьшению уровня шума (дБ) приведена ниже:

   Строительно-акустические мероприятия заключаются в рациональной планировке помещений и застройки, уменьшении шума на пути его распространения и обработке внутренних поверхностей помещений звукопоглощающими материалами. При рациональной планировке, помещений наиболее шумные цехи следует концентрировать в одном-двух местах и отделять от тихих помещений разрывами или помещениями, в которых люди находятся непродолжительное время. В цехах с шумным оборудованием необходимо правильное размещение станков. Их следует располагать таким образом, чтобы повышенные уровни шума наблюдались на минимально возможной площади. Между участками с разным уровнем шума устраивают перегородки или размещают подсобные помещения, склады сырья, готовых изделий и т. д. Для предприятий, расположенных в черте гррода, наиболее шумные помещения располагают в глубине территории. Уменьшение шума на территории жилой застройки проводится и архитектурно-планировочными решениями (разрывы, приемы застройки), и устройством шумозащитных сооружений (экранов, шумозащитных полос озеленения). Профили улиц с сооружениями, экранирующими шум, показаны на рис. 3.


Pиc. 3. Защита от транспортного шума с помощью:
а - здания; б - насыпи; в - откоса
   Значительное уменьшение шума наблюдается, когда на пути его распространения устанавливают экран. При этом за экраном возникает звуковая тень.
   В производственных помещениях уровень звука значительно повышается за счет отражения его от строительных конструкций и оборудования. Для уменьшения доли отраженного звука применяют специальную акустическую обработку помещения, заключающуюся в облицовке внутренних поверхностей звукопоглощающими материалами.
   При падении звуковой энергии Епад на какую-либо поверхность часть звуковой энергии поглощается - Епог, а часть отражается - Еотр. Отношение поглощенной энергии к падающей есть коэффициент звукопоглощения этой поверхности:

   Поглощение звука материалов обусловлено внутренним трением в материале и переходом энергии звука в тепловую энергию. Звукопоглощающие свойства материала зависят от толщины поглощающего слоя, частоты падающего на него звука и типа материала. Звукопоглощающими считают конструкции, у которых α больше 0,2.
   Звукопоглощающие конструкции делят на три группы: пористые звукопоглощающие; резонансные; штучные звукопоглотители. В практике строительства наиболее часто применяют пористые звукопоглощающие материалы (рис. 4, а). Конструкции из них выполняют в виде слоя необходимой толщины, укрепленного на ограждении или с отступом от него. Резонансные конструкции представляют собой перфорированные экраны, оклеенные с обратной стороны тканью. Они имеют максимальное звукопоглощение в определенной полосе частот, поэтому для них должны быть точно рассчитаны необходимые параметры звукопоглощения (рис. 4, б).


Рис. 4. Звукопоглощающие облицовки:
а - пористые; б - резонансные; 1 - крепление; 2 - звукопоглотитель; 3 - ограждающая конструкция; 4 - перфорированный экран
Рис. 5. Объемные звукопоглотители:
а - конструкция; б - схема размещения; 1 - каркас; 2 - точка подвеса; 3 - оболочка; 4 - звукопоглотитель
   Штучные звукопоглотители представляют собой объемные звукопоглощающие тела, например конусы, призмы, параллелепипеды, подвешиваемые к потолку (рис. 5).
   Величина снижения уровня шума при применении звукопоглощающих облицовок составляет 6...8 дБ, что соответствует снижению громкости в 1,5 раза.
   Одним из методов уменьшения шума является устройство звукопоглощающих ограждений (рис. 6). Механизм передачи звука через такое ограждение состоит в том, что звуковая волна, падающая на ограждение, приводит его в колебательное движение с той же частотой. В результате этого ограждающая конструкция сама становится источником звука. Но величина излучаемой звуковой мощности гораздо меньше звуковой мощности, падающей на ограждение со стороны источника шума, так как большая часть звуковой энергии отражается от ограждения.
   Звукоизолирующие качества ограждений характеризуются коэффициентом звукопроницаемости

   где I пр, р пр - интенсивность и звуковое давление прошедшего звука; I пад, р пад - интенсивность и звуковое давление падающего звука.
Рис. 6. Звукоизолирующий кожух:
1 - шумный агрегат; 2 - звукопоглотитель; 3 - звукоизолирующее ограждение; 4 - амортизаторы
Рис. 7. Схема-измерении шума:
1 - измерительный микрофон; 2 - усилитель; 3 - анализатор частоты (фильтр); 4 - детектор; 5 - индикатор
   На практике удобнее пользоваться величиной звукоизолирующей способности ограждения


   Для однослойной однородной перегородки

   где т - масса 1 м 2 ограждения, кг; f - частота звука, Гц.
   Однако эта зависимость справедлива только для определенной облдсти частот.
   Часто бывает невозможно уменьшить шум до допустимых пределов. В этих случаях необходимо пользоваться средствами индивидуальной защиты - наушниками, шлемами или специальными вкладышами, перекрывающими ушные раковины.
   Основным прибором для измерения шума служит шумомер. Принципиальная схема измерительного тракта дана на рис. 7.

Акустические колебания в диапазоне 16 Гц – 20 КГц, воспринимаемые человеком с нормальным слухом, называют звуковыми , с частотой менее 16 Гц – инфразвуковыми, выше 20 КГц – ультразвуковыми.

Распространяясь в пространстве, звуковые колебания создают акустическое поле. Ухо человека может воспринимать и анализировать звуки в широком диапазоне частот и интенсивностей. Порог слышимости различен для звуковых колебаний разных частот. Органы слуха человека наиболее чувствительны к частоте 1000 – 3000 Гц.

Область слышимых звуков ограничена двумя пороговыми кривыми: нижняя – порог слышимости, верхняя – порог болевого ощущения. Параметры, характеризующие звук :

· частота колебаний;

· скорость распространения звуковой волны;

· длина волны;

· амплитуда колебаний.

Шум является совокупностью звуков различной частоты и интенсивности. С точки зрения физиологии шумом является любой неприятный для человека звук. Согласно выводам Всемирной организации здравоохранения , шум является одним из основных факторов физического загрязнения окружающей среды, адаптация организма к которому практически невозможна.

Классификация шумов :

· низкочастотные;

· среднечастотные;

· высокочастотные;

· постоянные;

· непостоянные;

· продолжительные.

Шум, как гигиенический фактор представляет совокупность звуков, неблагоприятно воздействующих на организм человека, мешающих его работе и отдыху.

По физической сущности шум представляет собой волнообразно распространяющееся колебательное движение частиц упругой (газовой, жидкой или твердой) среды. Источником его является любое колеблющееся тело, выведенное из устойчивого состояния внешней силой.

В различных отраслях экономики, на предприятиях и фирмах имеются источники шума – это оборудование, машины, работа которых сопровождается шумом, людские потоки. Интенсивный шум способствует снижению внимания и увеличению числа ошибок при выполнении работы. Сильное влияние шум оказывает на быстроту реакции, сбор информации и аналитические процессы, что приводит к ухудшению качества работы, возникновению несчастных случаев. Постоянно находящийся в этих условиях персонал, подвергается воздействию шума, вредно действующего на организм и снижающего производительность труда. Длительное воздействие шума может привести к развитию такого профессионального заболевания, как «шумовая болезнь», тугоухость.

Шум оказывает влияние на весь организм человека: угнетает ЦНС, вызывает изменение скорости дыхания и пульса, способствует нарушению обмена веществ, возникновению сердечнососудистых заболеваний, гипертонической болезни, может приводить к профзаболеваниям. Установлено, что во время сна шум оказывает более негативное воздействие, чем в часы бодрствования.



Воздействие шума на человека определяется его уровнем (громкостью, интенсивностью) и высотой составляющих его звуков, а также продолжительностью воздействия. Понятие «интенсивность» и «громкость» не совсем тождественны. Интенсивность – объективная характеристика звука; громкость – характеристика его субъективного восприятия. Громкость звука возрастает гораздо медленнее, чем интенсивность.

Уровень шума выражается в логарифмической шкале, в децибелах(Дб). 1Дб – это десятая часть логарифма отношения давления, которое оказывают звуковые волны на барабанную перепонку уха, к предельно низкому, ещё ощущаемому ухом давлению.

Шум до 30-35 Дб привычен для человека и не беспокоит его. Повышение уровня шума до 40-70 Дб создаёт значительную нагрузку на нервную систему, вызывая ухудшение самочувствия, и при длительном действии может быть причиной неврозов . Воздействие шума уровнем свыше 70 Дб может привести к потере слуха – профессиональной тугоухости . При действии шума высоких уровней – более 140 Дб, возможен разрыв барабанных перепонок, контузия;свыше 160 Дб – смерть.

Уровни шумов от различных источников и реакция организма на акустические воздействия приведены в таблице:

Таблица 1.

Источники шума Уровень шума, Дб Реакция организма на длительное акустическое воздействие
Зимний лес в безветренную погоду Нормальное дыхание Шёпот, листва, прибой Средний шум в квартире, офисе Порог слышимости Успокаивает Гигиеническая норма
Шум внутри здания на магистрали Телевизор Поезд (метро), кричащий человек Мотоцикл, грузовик Появляются чувства раздражения, утомляемость, головная боль
Реактивный самолёт (на высоте 300м) Цех текстильной фабрики Постепенное ослабление слуха, нервно-психический стресс (угнетённость, возбуждённость, агрессивность), язвенная болезнь, гипертония
Плеер Ткацкий станок, отбойный молоток Реактивный двигатель (при взлёте, на расстоянии 25м) Шум на дискотеке 140-150 Вызывает звуковое опьянение, наподобие алкогольного, нарушается сон, разрушает психику, приводит к глухоте

Специфическое шумовое воздействие, сопровождающееся повреждением слухового анализатора, проявляется медленно прогрессирующим снижением слуха. У некоторых людей серьёзное повреждение слуха может наступить в течение первых месяцев воздействия, у других потеря слуха развивается постепенно. Снижение слуха на 10 Дб практически неощутимо, на 20 Дб – начинает серьёзно мешать человеку, так как нарушается способность слышать важные звуковые сигналы, наступает ослабление разборчивости речи.

Кратковременное понижение остроты слуха под воздействием шума с быстрым восстановлением функции после прекращения действия фактора, рассматривается как проявление адаптационной защитно-приспособительной реакции слухового органа. Адаптацией к шуму принято считать временное понижение слуха не более чем на 10-15 Дб с восстановлением его в течение 3 мин. после прекращения действия шума.

Длительное воздействие интенсивного шума может приводить к чрезмерному раздражению клеток звукового анализатора и его утомлению, а затем к стойкому снижению остроты слуха.

Установлено, что утомляющее и повреждающее слух действие шума пропорционально его высоте (частоте). Самое неблагоприятное воздействие на человека оказывает шум, в спектре которого преобладают высокие частоты (выше 800 Гц). Наиболее выраженные и ранние изменения наблюдаются на частоте 4000 Гц и близкой к ней области частот. При этом импульсивный шум (при одинаковой эквивалентной мощности) действует более неблагоприятно, чем непрерывный. По данным австрийских исследователей, шум в больших городах сокращает продолжительность жизни их жителей на 10 – 12 лет. Научно доказано, что повышенный шум неблагоприятно влияет и на развитие растений.

Развитие профессиональной тугоухости зависит от суммарного времени воздействия шума в течение рабочего дня и наличия пауз, а также общего стажа работы. Начальные стадии профессионального поражения наблюдаются у рабочих со стажем 5 лет; выраженные (поражение слуха на все частоты, нарушение восприятия шепотной и разговорной речи) – свыше 10 лет.

Помимо действия шума на органы слуха , установлено его вредное влияние на многие органы и системы организма, в первую очередь на центральную нервную систему . Поражение нервной системы под действием шума сопровождается раздражительностью, ослаблением памяти, апатией, подавленным настроением, изменением кожной чувствительности, наступает расстройство сна и т.д. У работников умственного труда происходит снижения темпа работы, ее качества и продолжительности.

Действие шума может привести к заболеваниям желудочно-кишечного тракта, сдвигам в обменных процессах, нарушению функционального состояния сердечнососудистой системы. Звуковые колебания восприниматься не только органами слуха, но и непосредственно через кости черепа (так называемая костная проводимость). Уровень шума, передаваемого этим путем на 20-25 Дб меньше уровня, воспринимаемого ухом. Если при невысоких уровнях шума передача за счет костной проводимости мала, то при высоких уровнях она значительно возрастает и усугубляет вредное действие на организм человека.

Таким образом, воздействие шума может привести к сочетанию профессиональной тугоухости (неврит слухового нерва) с функциональными расстройствами центральной нервной, вегетативной и сердечно-сосудистой и других систем, которые рассматриваются как профессиональные заболевания – шумовая болезнь.

Профессиональный неврит слухового нерва (шумовая болезнь) чаще всего встречается у рабочих различных отраслей машиностроения, текстильной промышленности и пр. Случаи заболевания встречаются у лиц, работающих на ткацких станках, с рубильными, клепальными молотками, у испытателей мотористов и других профессиональных групп, длительно подвергающихся интенсивному шуму.

В настоящее время особую опасность представляют плееры и дискотеки для подростков. Скандинавские учёные пришли к выводу, что каждый пятый подросток плохо слышит. Причина – злоупотребление переносными плеерами и долгое пребывание на дискотеках. Обычно уровень шума на дискотеке составляет 80-100 Дб, что сравнимо с уровнем шума интенсивного уличного движения или взлетающего в 100 м реактивного самолёта. Громкость звука плеера составляет 100-114 Дб. Почти так же оглушительно работает отбойный молоток. Правда, для рабочих в таких ситуациях предусмотрена шумовая защита. Если ею пренебречь, то уже через 4ч непрерывного грохота (в неделю) возможны кратковременные нарушения слуха в области высоких частот, а позднее появляется звон в ушах.

Здоровые барабанные перепонки могут без ущерба переносить громкость плеера в 110 Дб максимум в течение 1,5 мин. Французские учёные установили, что среди современных молодых людей активно распространяются нарушения слуха. С возрастом они, скорее всего, будут вынуждены пользоваться слуховыми аппаратами. Даже низкий уровень громкости мешает концентрации внимания во время умственной работы. Музыка, даже тихая, снижает внимание. Когда звук нарастает, организм производит большое количество гормонов стресса (адреналин). При этом сужаются кровеносные сосуды, замедляется работа кишечника. В дальнейшем это может привести к нарушениям в работе сердца и сосудов. Эти перегрузки – причины каждого десятого инфаркта.

Первый симптом ухудшения слуха называют эффектом званого ужина. На многолюдном вечере человек перестаёт различать голоса; не может понять, почему все смеются. Он начинает избегать многолюдных встреч, что может привести к социальной изоляции. Многие люди с нарушением слуха впадают в депрессию и даже страдают манией преследования.

Для борьбы с шумом в помещениях проводятся мероприятия как технического, так и медицинского характера.

Основными из них являются :

· Устранение причины шума или существенное его ослабление в самом источнике при разработке технологических процессов и проектирования оборудования.

· Изоляция источника шума от окружающей среды средствами звука- и виброзащиты, звука- и вибропоглощения.

· Уменьшение плотности звуковой энергии помещений, отраженной от стен и перекрытий.

· Рациональная планировка помещений.

· Применение средств индивидуальной защиты от шума.

· Рационализация режима труда в условиях шума.

· Профилактические мероприятия медицинского характера.

Наиболее эффективный путь борьбы с шумом, причиной которого является вибрация, возникающая от ударов, сил трения, механических колебаний – улучшение конструкции оборудования с целью устранения удара.

При высоких тонах шума вибрирующая поверхность покрывается материалом с большим внутренним трением (резина, пробка, битум, войлок и т.д.)

При невозможности достаточно эффективно снизить шум за счет создания совершенной конструкции, следует осуществлять его локализацию путем применения звукопоглощающих и звукоизолирующих конструкцийи материалов. На машинах устанавливаются специальные кожуха или размещают шумные оборудования в помещениях с массивными стенами без щелей и отверстий.

Широко применяются противошумные мостики на битумной основе, наносимые на поверхность металла; применяются звука- и вибрационные перекрытия; средства звукопоглощения (штукатурка, плиты, вата, древесноволокнистые плиты, камышитовые маты, войлок и др.).

Уменьшение шума можно достичь за счет рациональной планировки здания – шумные помещения должны быть сконцентрированы в глубине территории, в одном месте. Они должны быть удалены от помещений умственного труда и ограждены зоной зеленых насаждений, частично поглощающих шум, или шумозащитной стеной.

Если шумовые агрегаты нельзя звукоизолировать, то для защиты персонала должны применять акустические экраны, облицованные звукопоглощающими материалами, а также звукоизолированные кабины наблюдения и дистанционного управления.

Для защиты от шума широко применяются средства индивидуальной защиты – антифоны, выполненные в виде наушников или вкладышей, шлемов.

Отрицательное действие шумов можно снизить за счет сокращения времени их воздействия, построения рационального режима труда и отдыха.

В настоящее время в ряде стран установлены предельно допустимые уровни шума для предприятий, отдельных машин, транспортных средств. Например, к эксплуатации на международных линиях допускаются самолёты, создающие шум не выше 112 Дб днём и 102 Дб ночью. Начиная с моделей 1985 года максимально допустимые уровни шума: для легковых автомобилей 80 Дб, для автобусов и грузовых автомобилей в зависимости от массы и вместимости соответственно 81-85 Дб и 81-88 Дб.

В Украине разработана система оздоровительно-профилактических мероприятий по борьбе с шумом на производствах, среди которых важное место занимают санитарные нормы и правила (Таблица 2.). Согласно санитарным нормам, уровень шума около зданий днём не должен превышать 55 Дб, а ночью (с 23 до 7 ч) 45 Дб; в квартирах, соответственно, 40 и 30 Дб. Выполнение установленных норм и правил контролируют органы санитарной службы и общественного контроля.

Шум стал одним из основных загрязнителей окружающей среды. Сильный неожиданный звук и даже небольшой шум, например звуки радио и тем более транспорта, могут привести к эмоциональному и поведенческому стрессу, нарушить покой человека, вызвать быструю утомляемость, звон в ушах, головокружение, усиленное сердцебиение, головную боль, повысить кровяное давление.[ ...]

Примерно 10 млн населения России подвержено постоянному шумовому воздействию с высоким уровнем интенсивности.[ ...]

Отсутствие шума - показатель высокой культуры труда и один из факторов повышения его производительности.[ ...]

За рубежом тишина рассматривается как товар, имеющий стоимость. Квартиры в тихих районах значительно дороже. Транспортная магистраль с интенсивностью движения 1000-2000 машин в час рассматривается градостроителями как транспортная канализация.[ ...]

Рабочие шумных цехов и предприятий наиболее раздражительны и невнимательны в процессе производства. Это отражается и на взаимоотношениях в семье. Имеются сведения о том, что шум снижает остроту зрения. По данным французских ученых, 11 %всех несчастных случаев связаны с потерей слуха. Причиной ухудшения его оказываются не только плохие условия труда, но и жизнь в современных городах. Учеными установлено, что человек в крупном городе начинает глохнуть к 25 годам, в то время как потеря слуха у жителей джунглей Африки наблюдается лишь к 70 годам.[ ...]

Самый распространенный и мощный источник городского шума - транспорт, который составляет 60-80 % всех шумов, воздействующих на человека. Звук от проходящего транспорта, многократно отражаясь от стен зданий, создает большой уровень шума - 80-82 дБ. Исследовайия показывают, что транспортные потоки районных магистралей больших городов составляют 500-1000 машин в час, городских - 1000-2000, а в часы пик достигают 4000 машин в час. Пропускная способность магистралей многих городов не соответствует интенсивности транспортного потока.[ ...]

Неблагоприятное воздействие на население городов и пригородных территорий оказывает шум от авиационного транспорта, особенно с появлением новых, мощных воздушных лайнеров, увеличения интенсивности и расширения географии воздушных перевозок.[ ...]

Неожиданный сильный шум может привести к параличу сердца. Под воздействием шума развиваются сердечно-сосудистые заболевания. Язвенная болезнь, гастрит, нарушения обмена веществ чаще встречаются у людей, живущих и работающих в аномальной шумовой обстановке.[ ...]

Самолет, особенно реактивный, пролетающий на небольшой высоте, отрицательно воздействует на человека, распугивает животных, от его шума даже лопаются яйца в гнездах птиц. От колебаний воздуха частотой более 600 Гц, издаваемого транзистором, шмели, жуки, пчелы и другие насекомые с большим напряжением поднимаются в воздух или совершенно не способны сделать это.[ ...]

Особенно опасен для человека шум интенсивностью 130- 140 дБ от взлетающих реактивных самолетов. Вот почему нежелательно располагать рядом с аэропортами гостиницы, производственные помещения, жилые дома. Сами аэропорты следует размещать также на значительном удалении от городов и других населенных пунктов.

Нормирование шумов в производственных помещениях осуществляется в дБ в соответствии с ГОСТ 12.1.003-89 «Шум». Общие требования безопасности". Шум в жилых помещениях также нормируется ГОСТ 12.1.036-81 «ССБТ Шум». Допустимые уровни в жилых и общественных зданиях на уровне 40 дБ днем и 30 дБ в ночное время. Максимальный допустимый уровень шума в жилой зоне в дневное время 55дБ.

Запрещается даже кратковременное пребывание в зонах с уровнями звукового давления свыше 135 дБ в любой октавной полосе. Зоны с уровнем звука более 85 дБ А должны быть отмечены соответствующими знаками опасности, а работающие в этих зонах обеспечены средствами индивидуальной защиты.

Для борьбы с шумом в помещениях проводятся мероприятия как технического, так и медицинского характера. Основными из них являются:

  • 1. устранение причины шума или существенное его ослабление в самом источнике при разработке технологических процессов и проектировании оборудования;
  • 2. изоляция источника шума от окружающей среды средствами звуко- и виброзащиты, звуко- и вибропоглощения;
  • 3. уменьшение плотности звуковой энергии помещений, отраженной от стен и перекрытий;
  • 4. рациональная планировка помещений;
  • 5. применение средств индивидуальной защиты от шума;
  • 6. рационализация режима труда в условиях шума;
  • 7. профилактические мероприятия медицинского характера.

Наиболее эффективный путь борьбы с шумом, причиной которого является вибрация, возникающая от ударов, сил трения, механических усилий и т.д., - улучшение конструкции оборудования (изменение технологии с целью устранения удара). Снижение шума и вибрации достигается заменой возвратно-поступательного движения в узлах работающих механизмов равномерным вращательным. При высоких тонах шумов эффективно демпфирование, при котором вибрирующая поверхность покрывается материалом с большим внутренним трением (резина, пробка, битум, войлок и др.). К демпфирующим материалам при этом предъявляются следующие требования: высокая эффективность, малая масса, способность прочно удерживаться на металле и предохранять его от коррозии.

При невозможности достаточно эффективного снижения шума за счет создания совершенной конструкции той или иной машины следует осуществлять его локализацию у места возникновения путем применения звукопоглощающих и звукоизолирующих конструкций и материалов. Воздушные шумы ослабляются установкой на машинах специальных кожухов или размещением генерирующего шум оборудования в помещениях с массивными стенами без щелей и отверстий. Для исключения резонансных явлений кожухи следует облицовывать материалами с большим внутренним трением.

Для снижения структурных шумов, распространяемых в твердых средах, применяются звуко- и виброизоляционные перекрытия. Ослабление шума достигается применением под полом упругих прокладок без жесткой их связи с несущими конструкциями зданий, установкой вибрирующего оборудования на амортизаторы или специальные изолированные фундаменты. Широко применяются противошумные мастики на битумной основе, наносимые на поверхность металла. Наряду со звукоизоляцией в производственных условиях широко применяются средства звукопоглощения. Для помещений малого объема (400-500 м3) рекомендуется общая облицовка стен и перекрытий, снижающая уровень шума на 7-8 дБ. Наиболее высокими коэффициентами звукопоглощения в широком спектре частот обладают штукатурки и плиты, минеральная вата, древесноволокнистые плиты, камышитовые маты, войлок и пр. Эффективность звукопоглощения, увеличивается при многослойном размещении поглощающих материалов с воздушными прослойками между слоями также перфорацией покрытий. В помещениях большого объема эффективны звукопоглощающие барьеры и объемные поглотители, подвешиваемые над шумными агрегатами, которые увеличивают звукопоглощение почти в 2 раза по сравнению с покрытием звукопоглощающими материалами потолков и стен. Поглощение аэродинамических шумов осуществляется с помощью активных и реактивных глушителей.

Уменьшения шума можно достичь за счет рациональной планировки зданий, в соответствии с которой наиболее шумные помещения должны быть сконцентрированы в глубине территории в одном месте. Они должны быть удалены от помещений для умственного труда и ограждены зоной зеленых насаждений, частично поглощающих шум. Агрегаты с наиболее интенсивным шумом (выше 130 дБ) следует размещать вне территории предприятий и жилой зоны отделять от границ населенных пунктов шумозащитной зоной или стеной. Агрегаты, создающие шум более 90 дБ, должны размешаться в изолированных помещениях. Если шумные агрегаты нельзя звукоизолировать, то для защиты персонала от прямого шумоизлучения должны применяться акустические экраны, облицованные звукопоглощающими материалами, а также звукоизолированные кабины наблюдения и дистанционного управления. Так как инфразвук свободно проникает через строительные конструкции, то эффективная борьба с ним возможна только подавлением в источнике за счет изменения режимов работы оборудования, изменения жесткости конструкции, увеличения быстроходности агрегатов. Ультразвуковые колебания быстро затухают в воздухе, поэтому для уменьшения вредного воздействия ультразвука необходимо исключить непосредственный контакт человека с источником, а для подавления звуковых волн применять защитные кожухи.

Помимо мер технологического и технического характера, широко применяются средства индивидуальной защиты - антифоны, выполненные в виде наушников или вкладышей. Существует несколько десятков вариантов заглушек-вкладышей, наушников и шлемов, рассчитанных на изоляцию слухового прохода от шумов различного спектрального состава. Наиболее удобными и эффективными считаются вкладыши из смеси волокон органической бактерицидной ваты и ультратонких полимерных волокон из материала ФП («беруши»), позволяющие снизить уровень громкости шума на различных частотах от 15 до 31 дБ. Отрицательное действие шумов можно снизить за счет сокращения времени их воздействия, построения рационального режима труда и отдыха, предусматривающего кратковременные перерывы в течение рабочего дня для восстановления функции слуха в тихих помещениях. Для снижения уровня шума в жилых помещениях необходимы соответствующие градостроительные решения (вывод из жилых зон, заглубление или подъем на эстакады транспортных потоков, ориентация жилых помещений домов в направлении минимального уровня шума, использование малоэтажной застройки или зеленых насаждений в качестве акустических экранов и т.п.), административные (запрет движения тяжелого транспорта в ночное время в жилых районах), конструктивные (снижение уровня шума разрабатываемых транспортных средств, применение вместо обычного остекления зданий в шумных районах стеклопакетов и т.п.), организационные (поддержание на качественном уровне дорожных покрытий, рельсового и коммунального хозяйства) и т.п.

Методы борьбы с шумом

Выбор мероприятий по ограничению неблагоприятного действия шума на человека производится исходя из конкретных условий: величины превышения ПДУ, характера спектра, источника излучения. Средства защиты работников от шума подразделяются на средства коллективной и индивидуальной защиты.

К средствам индивидуальной защиты относятся:

1. Уменьшение шума в источнике.

2. Изменение направленности излучения шума.

3. Рациональная планировка предприятий и цехов.

4. Акустическая обработка помещений:

· звукопоглощающие облицовки;

· штучные поглотители.

5. Уменьшение шума на пути его распространения от источника к рабочему месту:

· звукоизоляцией;

· глушителями.

Наиболее эффективным методом борьбы с шумом является его снижение в источнике возникновения за счет применения рациональных конструкций, новых материалов и гигиенически благоприятных технологических процессов.

Уменьшение уровней генерируемых шумов в источнике его образования основано на устранении причин возникновения звуковых колебаний, которыми могут служить механические, аэродинамические, гидродинамические и электрические явления.

Шум механического происхождения может быть вызван следующими факторами: соударения деталей в сочленениях в результате наличия зазоров; трения в соединениях деталей механизмов; ударные процессы; инерционные возмущающие силы, возникающие из-за движения деталей механизма с переменными ускорениями и др. Уменьшение механического шума может быть достигнуто: заменой ударных процессов и механизмов безударными; заменой зубчатой передачи клиноременной; использованием по возможности не металлических деталей, а пластмассовых или изготовленных из других незвучных материалов; применением балансировки вращающихся элементов машин и др. Гидродинамические шумы, возникающие в следствии различных процессов в жидкостях (кавитации, турбулентности потока, гидравлических ударов), могут быть снижены, например, улучшением гидродинамических характеристик насосов и выбором оптимальных режимов их работы. Снижение электромагнитного шума, имеющего место при эксплуатации электрического оборудования, может осуществляться в частности путем изготовления скошенных пазов якоря ротора, применением более плотной прессовки пакетов в трансформаторах, использованием демпфирующих материалов и др.

Разработка малошумного оборудования является весьма сложной технической задачей, меры по ослаблению шумов в источнике часто оказываются недостаточными, вследствие чего дополнительное, а иногда и основное снижение шума достигается применением других средств защиты, рассмотренных ниже. Многие источники шума излучают звуковую энергию неравномерно по всем направлениям, т.е. обладают определенной направленностью излучения. Источники направленного действия характеризуются коэффициентом направленности, определяемым отношением:

где I - интенсивность звуковой волны в данном направлении на некотором расстоянии r от источника направленного действия мощностью W, излучающего волновое поле в телесный угол Щ; - интенсивность волны на том же расстоянии при замене данного источника на источник ненаправленного действия той же мощности. Величина 10 lg Ф называется показателем направленности.

В ряде случаев величина показателя направленности достигает 10-15 дБ, в связи с чем определенная ориентация установок с направленным излучением позволяет существенно снизить уровень шума на рабочем месте.

Рациональная планировка предприятий и цехов так же является эффективным методом снижения шума, например, за счет увеличения расстояния от источника шума до объекта (шум снижается прямо пропорционально квадрату расстояния), расположением тихих помещений внутри здания вдали от шумных, расположения защищаемых объектов глухими стенами к источнику шума и др.

Акустическая обработка помещений заключается в установке в них средств звукопоглощения. Поглощение звука - это необратимый период звуковой энергии в другие формы, главным образом в теплоту.

Средства звукопоглощения применяют для снижения шума на рабочих местах, находящихся как в помещениях с источниками шума, так и в тихих помещениях, куда проникает шум из соседних шумных помещений. Акустическая обработка помещений преследует цель снизить энергию отраженных звуковых волн, поскольку интенсивность звука в какой-либо точке помещения складывается из интенсивностей прямого звука от отраженного пола, потолка и других ограждающих поверхностей. Для уменьшения отраженного звука применяют устройства, обладающие большими значениями коэффициента поглощения. Свойствами поглощения звука обладают все строительные материалы. Однако звукопоглощающими материалами и конструкциями называются только те, у которых коэффициент звукопоглощения на средних частотах больше 0,2. У таких материалов, как кирпич, бетон, величина коэффициента звукопоглощения равна 0,01-0,05. К средствам звукопоглощения относятся звукопоглощающие облицовки и штучные звукопоглотители. В качестве звукопоглощающей облицовки наиболее часто применяют пористые и резонансные звукопоглотители.

Пористые звукопоглотители изготавливают из таких материалов как ультратонкое стекловолокно, древесноволокнистые и минеральные плиты, пенопласт с открытыми порами, шерсть и др. Звукопоглощающие свойства пористого материала зависят от толщины слоя, частоты звука, наличия воздушного промежутка между слоем и стенкой, на которой он установлен.

Для увеличения поглощения на низких частотах и для экономии материала между пористым слоем и стенкой делают воздушную прослойку. Для предотвращения механических повреждений материала и высыпания применяются ткани, сетки, пленки и перфорированные экраны, которые существенно влияют на характер поглощения звука.

Резонансные поглотители имеют воздушную полость, соединенную открытым отверстием с окружающей средой. Дополнительное снижение шума при использовании таких звукопоглощающих конструкций происходит за счет взаимного погашения падающих и отраженных волн.

Пористые и резонансные поглотители крепят к стенам или потолкам изолированных объемов. Установка звукопоглощающих облицовок производственных помещениях позволяет снизить уровень шума на 6…10 дБ вдали от источника и на 2…3 дБ вблизи источника шума.

Звукопоглощение может производится путем внесения в изолированные объемы штучных звукопоглотителей, представляющих собой объемные тела, заполненные звукопоглощающим материалом, изготовленные, например, в виде куба или конуса и прикрепляемые чаще всего к потолку производственных помещений.

В случаях, когда необходимо существенно снизить интенсивность прямого звука на рабочих местах применяют средства звукоизоляции.

Звукоизоляция - уменьшение уровня шума с помощью защитного устройства, которое устанавливают между источником и приемником и имеет большую отражающую или поглощающую способность. Звукоизоляция дает больший эффект (30-50 дБ), чем звукопоглощение (6-10 дБ).

К средствам звукоизоляции относятся звукоизолирующие ограждения 1, звукоизолирующие кабины и пульты управления 2, звукоизолирующие кожухи 3 и акустические экраны 4.

Звукоизолирующие ограждения - это стены, перекрытия, перегородки, проемы, окна, двери.

Звукоизоляция ограждения тем выше, чем больше массой (1 м 2 ограждения) они обладают, так увеличение массы в два раза приводит к повышению звукоизоляции на 6 дБ. Для одного того же ограждения звукоизоляция возрастает с увеличением частоты, т.е. на высоких частотах эффект установки ограждения будет значительно выше, чем на низких.

Для облегчения ограждающих конструкций без уменьшения звукоизоляции применяются многослойные ограждения, чаще всего двойные, состоящие из двух однослойных ограждений, соединенные между собой упругими связями: воздушным слоем, звукопоглощающим материалом и ребрами жесткости, шпильками и другими конструктивными элементами.

Эффективным простым и дешевым методом снижения шума на рабочих местах является применение звукоизолирующих кожухов.

Для получения максимальной эффективности кожухи должны полностью закрывать оборудование, механизм и т.д. Конструктивно кожухи выполняются съемными, раздвижными или капотного типа, сплошными герметичными или неоднородной конструкции - со смотровыми окнами, открывающимися дверцами, проемами для ввода коммуникаций и циркуляции воздуха.

Кожухи изготавливают обычно из листовых несгораемых или трудносгораемых материалов (сталь, дюралюминий). Внутренние поверхности стенок кожухов обязательно облицовывают звукопоглощающим материалом, а сам кожух изолирован рот вибрации основания. С наружной стороны на кожух наносят слой вибродемпфирующего материала для уменьшения передачи вибрации от машины на кожух. Если защищаемое оборудование выделяет теплоту, то кожухи снабжают вентиляционными устройствами с глушителями.

Для защиты от непосредственного, прямого воздействия шума используют экраны и выгородки (соединенные отдельные секции - экраны). Акустический эффект экрана основан на образовании за ним области тени, куда звуковые волны проникают лишь частично. При низких частотах (менее 300 Гц) экраны малоэффективны, так как за счет дифракции звук их легко огибает. Важно также, чтобы расстояние от источника шума до приемника было как можно меньше. Наиболее часто применяются экраны плоской и П-образной формы. Изготавливают экраны из сплошных твердых листов (металлических и т.п.) толщиной 1,5-2 мм с обязательной облицовкой звукопоглощающими материалами поверхности, обращенной к источнику шума, а в ряде случаев и с противоположной стороны.

Звукоизолирующие кабины используют для размещения в них пультов дистанционного управления или рабочих мест в шумных помещениях. Используя звукоизолирующие кабины, можно обеспечить практически любое требуемое снижение шума. Обычно кабины изготавливают из кирпича, бетона и других подобных материалов, а также сборными из металлических панелей (стальных или из дюралюминия).

Для уменьшения шума различных аэрогазодинамических установок и устройств применяются глушители. Например, во время рабочего цикла ряда установок (компрессор, двигателей внутреннего сгорания, турбин и др.) через специальные отверстия происходит истечение отработавших газов в атмосферу и (или) всасывание воздуха из атмосферы, при этом генерируется сильный шум. В этих случаях для снижения шума используются глушители.

Конструктивно глушители состоят из активных и реактивных элементов.

Простейшим активным элементом является любой канал (труба), стенки которого внутри покрыты звукопоглощающим материалом. Трубопроводы, как правило, имеют повороты, которые снижают шум за счет поглощения и отражения осевых волн назад к источнику. Реактивный элемент представляет собой участок канала, на котором внезапно увеличивается площадь сечения, в результате чего происходит отражение звуковых волн обратно к источнику. Эффективность звукопоглощения растет с увеличением числа камер и длинны соединяющей трубы.

При наличии в спектре шума дисперсных составляющих высокого уровня применяют реактивные элементы резонаторного типа: кольцевые и ответвления. Такие глушители настроены на частоты наиболее интенсивных составляющих путем соответствующего расчета размеров элементов глушителей (объема камер, длинны ответвлений, площади отверстий и др.).

Если применение коллективных средств защиты не позволяет обеспечить требования нормативов, применяются средства индивидуальной защиты, к которым относятся вкладыши, наушники, шлемы.

Вкладыши - самое дешевое средство, но недостаточно эффективное (снижение шума 5…20 дБ). Они вставляются в наружный слуховой проход представляют собой различного рода заглушки из волокнистых материалов, воскообразных мастик, или пластинчатых слепков, изготовленных по конфигурации слухового прохода.

Наушники представляют собой чашки из пластмассы и металла, заполненные звукопоглотителем. Для плотности прилегания чашки наушников снабжены специальными уплотняющими кольцами, заполненными воздухом или специальными жидкостями. Степень глушения звука наушниками на высоких частотах составляет 20…38 дБ.

Шлемы используются для защиты от очень сильных шумов (более 120 дБ), так как звуковые колебания воспринимаются не только ухом, но и через кости черепа.

Анализ безопасности рабочего места

Для защиты локомотивной бригады от шума и вибраций на локомотиве предусмотрены вибро- и шумоизоляция, вибродемпфирование. Так...

Безопасность жизнедеятельности на производстве

Ряд операций технологических процессов производства легкой промышленности сопровождается шумом и вибрацией, в настоящее время технически трудно устранимыми...

1.1 Основные понятия о риске Деятельность - активное сознательное взаимодействие человека со средой обитания, результатом которой должна быть ее полезность для существования человека в этой среде...

Безопасность работ на производстве

Одним из важнейших условий борьбы с производственным травматизмом является систематический анализ причин его возникновения, которые делятся на технические и организационные...

Защита от шума

Методы борьбы с механическим шумом: - замена ударных процессов безударными; - применение косозубых и шевронных передач; - подбор шестеренчатых пар по уровню шума; - замена металлических деталей деталями из "не звонких" материалов...

Ликвидация последствий радиационного заражения местности

Шум - это совокупность звуков разной интенсивности и частоты, беспорядочно изменяющихся во времени, возникающих в производственных условиях и вызывающих у работающих неприятные ощущения и объективные изменения органов и систем...

Опасности, распространяемые грызунами

Мероприятия по борьбе с грызунами это: полное уничтожение грызунов на объектах любой сложности и профилактические работы - постоянная борьба за свободу и чистоту ваших предприятий, организаций, дач, домов и квартир...

Опасности, распространяемые тараканами

Одним из самых распространенных заблуждений является то, что тараканов можно уничтожить навсегда, один раз обработав свою квартиру - это практически невозможно! Избавившись от насекомых...

Основные требования по охране труда и окружающей среды

Шум представляет собой беспорядочные, неритмичные сочетания звуков различной силы и частоты, вызывающие неприятное слуховое ощущение. Звук - это колебательное движение материальных частиц, волнообразно распространяющихся в пространстве...

Положения охраны труда на предприятиях

Для снижения шума в производственных помещениях применяют различные методы: уменьшение уровня шума в источнике его возникновения; звукопоглощение и звукоизоляция; установка глушителей шума; рациональное размещение оборудования; применение...

Положения эргономики. Безопасность при эксплуатации технических систем. Пожары в населенных пунктах

Для населенных пунктов, расположенных в лесных массивах, органами местного самоуправления должны быть разработаны и выполнены мероприятия...

Производственный шум

Выбор мероприятий по ограничению неблагоприятного действия шума на человека производится исходя из конкретных условий: величины превышения ПДУ, характера спектра, источника излучения...

Профессиональные заболевания от воздействия шума, инфра- и ультразвука

Шум - беспорядочное сочетание различных по силе и частоте звуков; способен оказывать неблагоприятное воздействие на организм. Источником шума является любой процесс, вызывающий местное изменение давления или механические колебания в твердых...

Система обеспечения промышленной безопасности деревообрабатывающего участка цеха № 10 ФГУП "МПЗ"

Одним из отрицательных факторов окружающей среды на промышленных предприятиях является шум, к которому следует отнести любые звуки, мешающие нормальному режиму труда и отдыха, независимо от их происхождения...

Способи боротьби з шумом на підприємствах. Пожежна безпека

Шум - одна з найпоширеніших виробничих шкідливостей, яку дуже складно усунути. При тривалому впливі шуму не тільки знижується гострота слуху, але й погіршується робота центральної нервової і серцево-судинної систем, шлунково-кишкового тракту...